Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 11: 1366753, 2024.
Article in English | MEDLINE | ID: mdl-38486946

ABSTRACT

Introduction: Maintenance hemodialysis is an effective treatment for end-stage renal disease patients. A critical factor contributing to the deterioration and death of maintenance hemodialysis patients is inflammation. Therefore, we focused on two inflammatory markers, serum ferritin and neutrophil-to-lymphocyte ratio, to speculate whether they could predict the prognosis of maintenance hemodialysis patients. Patients and methods: We followed 168 patients with maintenance hemodialysis from July 2019 to July 2022 with the endpoint of all-cause death or follow-up completion. Receiver operating characteristic curves were plotted to assess the values of serum ferritin, neutrophil-to-lymphocyte ratio and serum ferritin combined with neutrophil-to-lymphocyte ratio to predict the outcomes of maintenance hemodialysis patients. Kaplan-Meier survival curves were constructed to compare survival rates over time. Results: Receiver operating characteristic curves demonstrated that the best cut-off value of serum ferritin for predicting the prognosis of maintenance hemodialysis patients was 346.05 µg/L, and that of neutrophil-to-lymphocyte ratio was 3.225. Furthermore, a combination of both had a more excellent predicting value than either index (p < 0.05). Kaplan-Meier survival curve analyses revealed that low serum ferritin levels and low neutrophil-to-lymphocyte ratio had a higher probability of survival than high ferritin levels and high neutrophil-to-lymphocyte ratio, separately. Conclusion: Elevated serum ferritin and neutrophil-to-lymphocyte ratio are closely related to all-cause mortality among maintenance hemodialysis patients, for which they may be predictors of all-cause mortality. Additionally, the combination of the two has a much higher predictor value for the prognosis of maintenance hemodialysis patients.

2.
Cell Rep ; 43(3): 113950, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489264

ABSTRACT

Despite extensive research, the origin and evolution of the chloroplast division machinery remain unclear. Here, we employ recently sequenced genomes and transcriptomes of Archaeplastida clades to identify the core components of chloroplast division and reconstruct their evolutionary histories, respectively. Our findings show that complete division ring structures emerged in Charophytes. We find that Glaucophytes experienced strong selection pressure, generating diverse variants adapted to the changing terrestrial environments. By integrating the functions of chloroplast division genes (CDGs) annotated in a workflow developed using large-scale multi-omics data, we further show that dispersed duplications acquire more species-specific functions under stronger selection pressures. Notably, PARC6, a dispersed duplicate CDG, regulates leaf color and plant growth in Solanum lycopersicum, demonstrating neofunctionalization. Our findings provide an integrated perspective on the functional evolution of chloroplast division machinery and highlight the potential of dispersed duplicate genes as the primary source of adaptive evolution of chloroplast division.


Subject(s)
Chloroplasts , Plants , Chloroplasts/genetics , Plants/genetics , Evolution, Molecular , Phylogeny
3.
Adv Sci (Weinh) ; 11(17): e2309491, 2024 May.
Article in English | MEDLINE | ID: mdl-38380490

ABSTRACT

The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche. Additionally, the underlying therapeutic mechanism of exosomes is elucidated. The results reveal that exosomes can directly provide recipient cells with SHP2 for the activation of mitophagy and elimination of mtROS, which is the immediate cause of ER dysfunction. To maximize the therapeutic effect of engineered exosomes, a high-performance hydrogel with self-healing, bioadhesive, and exosome-conjugating properties is applied to encapsulate the engineered exosomes for in vivo application. In vivo, evaluation in diabetic bone defect repair models demonstrates that the engineered exosomes delivering hydrogel system intensively enhance osteogenesis. These findings provide crucial insight into the design and biological mechanism of ER homeostasis-based tissue-engineering strategies for diabetic bone regeneration.


Subject(s)
Bone Regeneration , Endoplasmic Reticulum , Exosomes , Homeostasis , Hydrogels , Mesenchymal Stem Cells , Exosomes/metabolism , Bone Regeneration/physiology , Bone Regeneration/genetics , Animals , Homeostasis/physiology , Hydrogels/chemistry , Mice , Endoplasmic Reticulum/metabolism , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Osteogenesis/physiology , Disease Models, Animal , Tissue Engineering/methods , Male , Humans
4.
ACS Macro Lett ; 13(1): 94-98, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38176070

ABSTRACT

Despite 40 years of development of DNA nanotechnology, the fundamental knowledge of the process of DNA strand assembly into targeted nanostructures remains unclear. Study of the dynamic process, especially the competing hybridizations in kinetic traps, provides insight into DNA assembly. In this study, a system of middle-domain first assembly (MDFA) was proposed to enable oligonucleotides to assemble into a 2D DNA monolayer in a pathway-dependent approach. This system was an ideal case to study the dynamic interactions between competing hybridizations during oligonucleotide assembly. Dynamic study revealed the coexistence of the kinetically trapped dead-end byproduct and target product at the early stage of annealing, followed by transformation of the byproduct into the target product by reverse disassembly, due to the equilibrium of the competing hybridizations increasingly favoring the target product pathway. This study offered a better understanding of the assembly pathway of DNA nanostructures for future design.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Nanostructures/chemistry , Nanotechnology , Nucleic Acid Hybridization , Kinetics
5.
Plant Cell ; 36(3): 764-789, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38057163

ABSTRACT

Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.


Subject(s)
Actins , Arabidopsis , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Formins/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin Cytoskeleton/metabolism , Epidermal Cells/metabolism
6.
Int J Bioprint ; 9(5): 773, 2023.
Article in English | MEDLINE | ID: mdl-37457928

ABSTRACT

Photo-crosslinked hydrogel (PH) is an outstanding candidate for three-dimensional (3D) printing as a wound dressing because of its high efficiency in crosslinking and injectability. In this study, methylene blue (MB)-loaded UiO-66(Ce) nanoparticles (NPs) were synthesized to prevent drug self-aggregation and achieve the photodynamic therapy (PDT) effect for efficient antibacterial action. Then, a composite photocrosslinked silk fibroin (SF)/gelatin hydrogel loaded with MB@UiO-66(Ce) NPs (MB@UiO-66(Ce)/PH) was fabricated. The printability and the improvement of the mechanical properties of the hydrogel by the NPs were clarified. The hydrogel exhibited good biocompatibility and promoted the migration and proliferation of fibroblasts. With the PDT effect of MB@UiO-66(Ce) NPs, the hydrogel showed an excellent antibacterial effect, which became more pronounced as the concentration increased. In vivo study showed that the MB@UiO-66(Ce)/PH could fill the defects without gaps and accelerate the repair rate of full-thickness skin defects in mice. The MB@UiO-66(Ce)/PH with antibacterial properties and tissue healing-promoting ability provides a new strategy involving 3D bioprinting for preparing wound dressings.

7.
Bioact Mater ; 24: 236-250, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36606257

ABSTRACT

Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.

8.
J Biol Chem ; 299(3): 102917, 2023 03.
Article in English | MEDLINE | ID: mdl-36657643

ABSTRACT

The division of cyanobacteria and their chloroplast descendants is orchestrated by filamenting temperature-sensitive Z (FtsZ), a cytoskeletal GTPase that polymerizes into protofilaments that form a "Z ring" at the division site. The Z ring has both a scaffolding function for division-complex assembly and a GTPase-dependent contractile function that drives cell or organelle constriction. A single FtsZ performs these functions in bacteria, whereas in chloroplasts, they are performed by two copolymerizing FtsZs, called AtFtsZ2 and AtFtsZ1 in Arabidopsis thaliana, which promote protofilament stability and dynamics, respectively. To probe the differences between cyanobacterial and chloroplast FtsZs, we used light scattering to characterize the in vitro protofilament dynamics of FtsZ from the cyanobacterium Synechococcus elongatus PCC 7942 (SeFtsZ) and investigate how coassembly of AtFtsZ2 or AtFtsZ1 with SeFtsZ influences overall dynamics. SeFtsZ protofilaments assembled rapidly and began disassembling before GTP depletion, whereas AtFtsZ2 protofilaments were far more stable, persisting beyond GTP depletion. Coassembled SeFtsZ-AtFtsZ2 protofilaments began disassembling before GTP depletion, similar to SeFtsZ. In contrast, AtFtsZ1 did not alter disassembly onset when coassembled with SeFtsZ, but fluorescence recovery after photobleaching analysis showed it increased the turnover of SeFtsZ subunits from SeFtsZ-AtFtsZ1 protofilaments, mirroring its effect upon coassembly with AtFtsZ2. Comparisons of our findings with previous work revealed consistent differences between cyanobacterial and chloroplast FtsZ dynamics and suggest that the scaffolding and dynamics-promoting functions were partially separated during evolution of two chloroplast FtsZs from their cyanobacterial predecessor. They also suggest that chloroplasts may have evolved a mechanism distinct from that in cyanobacteria for promoting FtsZ protofilament dynamics.


Subject(s)
Cytoskeletal Proteins , Synechococcus , Arabidopsis/genetics , Bacterial Proteins/genetics , Chloroplasts , GTP Phosphohydrolases/genetics , Guanosine Triphosphate , Synechococcus/genetics , Temperature , Cytoskeletal Proteins/metabolism
9.
Bioact Mater ; 21: 403-421, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36185741

ABSTRACT

Injectable hydrogel is suitable for the repair of lacunar bone deficiency. This study fabricated an injectable, self-adaptive silk fibroin/mesoporous bioglass/sodium alginate (SMS) composite hydrogel system. With controllable and adjustable physical and chemical properties, the SMS hydrogel could be easily optimized adaptively to different clinical applications. The SMS hydrogel effectively showed great injectability and shapeability, allowing defect filling with no gap. Moreover, the SMS hydrogel displayed self-adaptability in mechanical reinforcement and degradation, responsive to the concentration of Ca2+ and inflammatory-like pH value in the microenvironment of bone deficiency, respectively. In vitro biological studies indicated that SMS hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells by activation of the MAPK signaling pathway. The SMS hydrogel also could improve migration and tube formation of human umbilical vein endothelial cells. Investigations of the crosstalk between osteoblasts and macrophages confirmed that SMS hydrogel could regulate macrophage polarization from M1 to M2, which could create a specific favorable environment to induce new bone formation and angiogenesis. Meanwhile, SMS hydrogel was proved to be antibacterial, especially for gram-negative bacteria. Furthermore, in vivo study indicated that SMS could be easily applied for maxillary sinus elevation, inducing sufficient new bone formation. Thus, it is convincing that SMS hydrogel could be potent in a simple, minimally invasive and efficient treatment for the repair of lacunar bone deficiency.

10.
Front Surg ; 9: 903271, 2022.
Article in English | MEDLINE | ID: mdl-36061051

ABSTRACT

Purpose: Oral squamous cell carcinoma (OSCC) is the most common oral cancer worldwide. Pyroptosis is a type of programmed cell death mediated by caspase, accompanied by an inflammatory response, and plays an important role in cancer progression. The purpose of this study was to explore and identify potential biomarkers and further elucidate the potential role of cell pyroptosis in OSCC. Methods: We regarded the samples from The Cancer Genome Atlas database as a training dataset, screened differentially expressed genes (DEGs), and further screened out OSCC phenotypic characteristic genes by using weighted gene co-expression network analysis. The analysis of 42 known pyroptosis-related genes showed that Psuch genes were widely expressed, mutated, and methylated in OSCC samples. Results: Through correlation analysis, we identified our OSCC pyroptosis-related DEGs. To further evaluate the prognostic value of pyroptosis-related regulators, we constructed a seven gene-based prognostic signature using Cox univariate analysis and least absolute shrinkage and selection operator Cox regression analysis. Meanwhile, we found that patients in the low-risk group had higher immune infiltration. Moreover, our results also indicated significant differences in sensitivity to cisplatin and gefitinib between the high-risk and low-risk groups. Conclusion: Our study successfully constructed the pyroptosis-related prognostic signature, which might play a potential prediction role in OSCC prognosis. Our findings also suggested that pyroptosis-related regulators might be novel biomarkers for tumor diagnosis and treatment in OSCC.

11.
Front Pharmacol ; 13: 955983, 2022.
Article in English | MEDLINE | ID: mdl-36091759

ABSTRACT

Bone defect repair and fracture healing are critical challenges in clinical treatments. Bioactive natural compounds are potential resources for medications for osteogenic effects. We have identified icariin, the effective ingredient of Epimedium pubescens, to promote osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and repair bone defects. To explore more natural compounds with the potential modality for bone repair, in the present study, we employed an icariin-induced gene expression pattern as an osteogenic model and screened the Connectivity Map database for small molecules with gene expression signatures similar to this model. We verified the effectiveness of this molecule docking approach by introducing hydroxycholesterol, the second highest score of the similarity to icariin, into the osteoinductive experiments in vitro and demonstrated its excellent osteogenic effect on BMSCs compared with a BMP-2-positive control group. Based on the compatible result of hydroxycholesterol, subsequently, ginsenoside Rb1 was chosen as the most drug-like natural compound among the molecule docking results from icariin. Finally, ginsenoside Rb1 was demonstrated to promote the expression of osteoblastic genes and ALP activity in vitro and repair the calvarial defect of rats in vivo. The study aimed to provide diverse choices for clinical application in bone repair and functional regeneration.

12.
Bioact Mater ; 15: 409-425, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35386350

ABSTRACT

We has synthesized the biocompatible gelatin reduced graphene oxide (GOG) in previous research, and in this study we would further evaluate its effects on bone remodeling in the aspects of osteoclastogenesis and angiogenesis so as to verify its impact on accelerating orthodontic tooth movement. The mouse orthodontic tooth movement (OTM) model tests in vivo showed that the tooth movement was accelerated in the GOG local injection group with more osteoclastic bone resorption and neovascularization compared with the PBS injection group. The analysis on the degradation of GOG in bone marrow stromal stem cells (BMSCs) illustrated its good biocompatibility in vitro and the accumulation of GOG in spleen after local injection of GOG around the teeth in OTM model in vivo also didn't influence the survival and life of animals. The co-culture of BMSCs with hematopoietic stem cells (HSCs) or human umbilical vein endothelial cells (HUVECs) in transwell chamber systems were constructed to test the effects of GOG stimulated BMSCs on osteoclastogenesis and angiogenesis in vitro. With the GOG stimulated BMSCs co-culture in upper chamber of transwell, the HSCs in lower chamber manifested the enhanced osteoclastogenesis. Meanwhile, the co-culture of GOG stimulated BMSCs with HUVECs showed a promotive effect on the angiogenic ability of HUVECs. The mechanism analysis on the biofunctions of the GOG stimulated BMSCs illustrated the important regulatory effects of PERK pathway on osteoclastogenesis and angiogenesis. All the results showed the biosecurity of GOG and the biological functions of GOG stimulated BMSCs in accelerating bone remodeling and tooth movement.

13.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269589

ABSTRACT

In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dß (PLDß) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDß-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDß/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Phosphatidic Acids/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Immunity, Innate , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Plant Immunity , Signal Transduction
14.
Int J Oral Sci ; 14(1): 10, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35153297

ABSTRACT

Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then, micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor's expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.


Subject(s)
Durapatite , Osteogenesis , Alginates/pharmacology , Animals , Bone Regeneration , Cell Differentiation , Durapatite/pharmacology , Ginsenosides , Rats , Silk/pharmacology , Tissue Scaffolds
15.
Carbohydr Polym ; 263: 117888, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33858564

ABSTRACT

The molecular structure of sulfonated chitosan is similar to heparin, and it has been proved to have some heparin functions. Studies have shown that heparin and bone morphogenetic protein-2 (BMP-2) have synergistic effects, but heparin has limitations in clinical application. In this paper, the synergistic effect of 2-N,6-O-sulfonated chitosan (26SCS) and BMP-2 was studied. The preparation of 26SCS was explored and 26SCS was co-cultured with bone marrow mesenchymal stem cells (BMSCs) to study the effects of 26SCS on the proliferation, adhesion behavior and osteogenic differentiation of BMSCs. The synergistic mechanism of 26SCS and BMP-2 was explored by circular dichroism and isothermal calorimetric titration. The results showed that 26SCS affected the secondary structure of BMP-2 protein, mainly caused the significant change of antiparallel conformation in ß-fold, and then improved the biological activity of BMP-2 and showed a dose-dependent manner. 26SCS was expected to be a synergistic factor of BMP-2.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Alkaline Phosphatase/metabolism , Animals , Calcification, Physiologic/drug effects , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Heparin/chemistry , Heparin/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Protein Structure, Secondary/drug effects , Rabbits , Sulfur/chemistry
16.
J Biol Chem ; 296: 100627, 2021.
Article in English | MEDLINE | ID: mdl-33812992

ABSTRACT

Bacterial cell and chloroplast division are driven by a contractile "Z ring" composed of the tubulin-like cytoskeletal GTPase FtsZ. Unlike bacterial Z rings, which consist of a single FtsZ, the chloroplast Z ring in plants is composed of two FtsZ proteins, FtsZ1 and FtsZ2. Both are required for chloroplast division in vivo, but their biochemical relationship is poorly understood. We used GTPase assays, light scattering, transmission electron microscopy, and sedimentation assays to investigate the assembly behavior of purified Arabidopsis thaliana (At) FtsZ1 and AtFtsZ2 both individually and together. Both proteins exhibited GTPase activity. AtFtsZ2 assembled relatively quickly, forming protofilament bundles that were exceptionally stable, as indicated by their sustained assembly and slow disassembly. AtFtsZ1 did not form detectable protofilaments on its own. When mixed with AtFtsZ2, AtFtsZ1 reduced the extent and rate of AtFtsZ2 assembly, consistent with its previously demonstrated ability to promote protofilament subunit turnover in living cells. Mixing the two FtsZ proteins did not increase the overall GTPase activity, indicating that the effect of AtFtsZ1 on AtFtsZ2 assembly was not due to a stimulation of GTPase activity. However, the GTPase activity of AtFtsZ1 was required to reduce AtFtsZ2 assembly. Truncated forms of AtFtsZ1 and AtFtsZ2 consisting of only their conserved core regions largely recapitulated the behaviors of the full-length proteins. Our in vitro findings provide evidence that FtsZ1 counterbalances the stability of FtsZ2 filaments in the regulation of chloroplast Z-ring dynamics and suggest that restraining FtsZ2 self-assembly is a critical function of FtsZ1 in chloroplasts.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Cytoskeleton/metabolism , GTP Phosphohydrolases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics
17.
Bioact Mater ; 6(7): 2011-2028, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33426373

ABSTRACT

Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.

18.
Angew Chem Int Ed Engl ; 60(10): 5377-5385, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33226694

ABSTRACT

All-DNA nanomedicines have emerged as potential anti-tumor drugs. DNA nanotechnology provides all-DNA nanomedicines with unlimited possibilities in controlling the diversification of size, shape, and loads of the therapeutic motifs. As DNA is a biological polymer, it is possible to genetically encode and produce the all-DNA nanomedicines in living bacteria. Herein, DNA-dendrimer-based nanomedicines are designed to adapt to the biological production, which is constructed by the flexible 3-arm building blocks to enable a highly efficient one-pot DNA assembly. For the first time, a DNA nanomedicine, D4-3-As-DzSur, is successfully genetically encoded, biotechnologically produced, and directly self-assembled. The performance of the biologically produced D4-3-As-DzSur in targeted gene regulation has been confirmed by in vitro and in vivo studies. The biological production capability will fulfill the low-cost and large-scale production of all-DNA nanomedicines and promote clinical applications.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA, Catalytic/therapeutic use , Dendrimers/therapeutic use , Doxorubicin/therapeutic use , Drug Carriers/therapeutic use , Neoplasms/drug therapy , A549 Cells , Animals , Apoptosis/drug effects , DNA, Catalytic/genetics , DNA, Catalytic/pharmacokinetics , Dendrimers/pharmacokinetics , Drug Carriers/pharmacokinetics , Female , Gene Expression/drug effects , Genetic Therapy , Humans , Mice, Inbred BALB C , Mice, Nude , Nanomedicine/methods , Neoplasms/genetics , Neoplasms/pathology , Survivin/genetics , Xenograft Model Antitumor Assays
19.
Int J Nanomedicine ; 15: 6761-6777, 2020.
Article in English | MEDLINE | ID: mdl-32982232

ABSTRACT

PURPOSE: Guided bone regeneration (GBR) therapy, which is a widely used technique in clinical practice and is effective in improving the repair of alveolar bone defects or bone mass deficiency regeneration, requires the use of membrane materials with good biocompatibility, barrier function, rigidity matching the space maintenance ability, economic benefits and excellent clinical applicability. The aim of this study was to develop an electrospun attapulgite (ATT)-doped poly (lactic-co-glycolic acid) (PLGA) scaffold (PLGA/ATT scaffold) as a novel material for GBR applications. METHODS AND RESULTS: Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to determine the morphology and the crystalline structure of the PLGA/ATT scaffolds, respectively. Porosity and contact-angle measurements were also carried out to further characterize the physical properties of the PLGA/ATT scaffolds. The results of in vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) attached more readily to and spread better over the PLGA/ATT scaffolds than the Bio-Gide membrane. Furthermore, in the in vitro osteoinductive experiments with BMSCs, the PLGA/ATT scaffolds were found to enhance the activity of alkaline phosphatase (ALP), promote the formation of mineralized bone nodules, and up-regulate the expression of several osteogenic markers-namely, runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin-which are similar to the effects of the Bio-Gide membrane. Further, in in vivo studies, the results of sequential fluorescent labeling, micro-computed tomography, and histological analysis suggest that using the PLGA/ATT scaffolds for repairing V-shaped buccal dehiscence on a dog's tooth root improved bone regeneration, which is not only similar to the result obtained using the Bio-Gide membrane but also much better than that obtained using PLGA scaffolds and the negative control. CONCLUSION: To achieve satisfactory therapeutic results and to lower the cost of GBR treatment, this study provided a promising alternative material of bio-degradable membrane in clinical treatment.


Subject(s)
Alveolar Bone Loss/therapy , Bone Regeneration/physiology , Magnesium Compounds/pharmacology , Silicon Compounds/pharmacology , Tissue Scaffolds/chemistry , Animals , Bone Regeneration/drug effects , Calcification, Physiologic , Collagen , Dogs , Gene Expression , Gingiva/cytology , Humans , Magnesium Compounds/chemistry , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Osteogenesis/drug effects , Osteogenesis/genetics , Osteogenesis/physiology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Rats, Sprague-Dawley , Silicon Compounds/chemistry , Tooth Root/diagnostic imaging , X-Ray Microtomography
20.
Mater Sci Eng C Mater Biol Appl ; 110: 110622, 2020 May.
Article in English | MEDLINE | ID: mdl-32204064

ABSTRACT

Sufficient vascularization is quite important for preventing cell death and promoting host integration during the repair of the critical sized bone defects. Porous structure providing enough space for the ingrowth of vessels is an essential consideration during the scaffold's development. In this study, we designed and fabricated three kinds of porous structured scaffolds based on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), such as mono-structured PHBHHx scaffolds with macro pores (PH-1), di-structured PHBHHx scaffolds with macro-meso pores (PHS-2), and tri-structured PHBHHx scaffolds with macro-micro-meso pores (PHS-3), respectively. In vitro effects of the hierarchical porous scaffolds on human umbilical vein endothelial cells (HUVECs), such as cell attachment, glucose and lactate detection, relative gene expressions of endothelial markers were investigated. The PHS-3 scaffolds exhibited preferential potency of inducing better angiogenesis in vitro. Consequently, the hierarchical porous scaffolds were applied to load rhBMP-2 and repair the critical sized bone defect (15 mm) in rabbits. Microangiography analysis by three dimensional micro-computed tomographic (micro-CT) demonstrated that the volume of blood vessels within the defect area was higher in the rhBMP-2 loaded PHS-3 (PHS-3/rhBMP-2) than that in other rhBMP-2 loaded porous scaffolds with simplex or double scaled pores (PH-1/rhBMP-2 or PHS-2/rhBMP-2) at 4 weeks and 8 weeks, which implied that multi-level porous structure was conducive to nutrition transmission and revascularization. Further investigations of orthotopic bone formation by micro-CT, histological and immunohistochemistry analysis confirmed the most accelerated new bone formation rate in the PHS-3/rhBMP-2 group. The maximum load value of the regenerated bone induced by PHS-3/rhBMP-2 at 12 weeks was 258.47 ± 14.77 N which did not show significant difference from the normal bone of 268.81 ± 12.05 N. These results highlighted that introducing multi-level pores into the biocompatible scaffolds may be an effective approach to promote angiogenesis and bone regeneration.


Subject(s)
3-Hydroxybutyric Acid/chemistry , Bone Regeneration , Caproates/chemistry , Gene Expression Regulation , Neovascularization, Physiologic , Osteogenesis , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Bone Morphogenetic Protein 2/chemistry , Cell Adhesion , Human Umbilical Vein Endothelial Cells , Humans , Male , Porosity , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...